
Optimizing the Fine-tuning Process of Large Language Models

 Mahbub Islam Mahim and Jugal Krishna Das

Department of Computer Science and Engineering, Jahangirnagar University, Savar, Dhaka-1342

Correspondence E-mail: mahim.stu20171@juniv.edu

Abstract—We present an optimized fine-tuning process for

large language models (LLMs) that combines Low-Rank

Adaptation (LoRA) and Quantization. Traditional full fine-

tuning methods are computationally expensive, requiring

significant GPU memory, which limits their accessibility. In our

approach, we first quantize the LLaMA-2 7B model and then

apply LoRA fine-tuning to that quantized model. We

demonstrate that the combination of quantization and LoRA

significantly reduces GPU memory requirements while

maintaining model performance. Through rigorous experiments

of different combinations of quantization and LoRA, we

successfully fine-tuned the 7B LLaMA-2 model on CodeAlpaca-

20k dataset with only 10.8 GB of GPU memory using the best

combination of quantization (4-bit) and LoRA (rank 16),

compared to the 112 GB required by traditional methods. We

further developed an inference system using this optimized fine-

tuned model for practical deployment. 

Index Terms— Generative Artificial Intelligence, Low-Rank

Adaptation, Quantization, Optimization, LLaMA-2, Code

Alpaca.

I. INTRODUCTION

The rapid evolution of large language models (LLMs) has

revolutionized natural language processing, allowing

significant advancements across a myriad of applications.

Refining LLMs by finetuning is well acknowledged for

greatly boosting their performance [1-4] on specific

knowledge and for adjusting behaviors to accomplish desired

results [4-6]. Despite their impressive capabilities, the

substantial computational and memory demands associated

with fine-tuning these models present a formidable challenge

[7]. For instance, conventional 16-bit fine-tuning of a LLaMA

65B parameter model [8] takes more than 780 GB of GPU

memory and a 7B parameter model takes 112 GB. So,

optimizing the fine-tuning process is crucial for leveraging

LLMs in resource-constrained environments.

This paper explores two key methodologies-model

quantization and Low-Rank Adaptation (LoRA)-that address

this challenge by reducing the computational burden while

maintaining model performance [9-10]. Model quantization

reduces the precision of model weights, thus significantly

decreasing memory usage and increasing inference speed,

while LoRA achieves efficient fine-tuning by approximating

weight updates with low-rank matrices. Through a detailed

examination of these techniques and their integration, this

research aims to enhance the efficiency of fine-tuning large

language models, paving the way for broader accessibility and

practical deployment in various domains.

II. LITERATURE REVIEW

Recent advancements in large language models (LLMs) have

led to significant improvements in natural language processing

tasks. However, the computational and memory requirements

for fine-tuning these models remain substantial. This review

examines current methodologies for optimizing the fine-tuning

process, focusing on model quantization and Low-Rank

Adaptation. Model quantization reduces the precision of the

weights and activations, typically from 32-bit floating-point to

lower bit-width representations such as 16-bit, 8-bit, or NF4-

bits. Quantization can significantly decrease the model size

and increase inference speed with minimal loss in accuracy.

Some research [9] demonstrates that post-training quantization

can yield up to a 4x reduction in model size with negligible

performance degradation. Mixed-precision training [11]

combines high and low-precision operations to balance speed

and accuracy effectively.

LoRA is a widely used PEFT [12] technique for optimizing

LLM because of its wide range of applications and strong

results as compared to other approaches. It focuses on efficient

fine-tuning by approximating the weight updates using low-

rank matrices. LoRA showed that it could drastically reduce

the number of trainable parameters while maintaining model

performance [10]. It inserts low-rank decomposition matrices

into each layer of the transformer architecture, enabling the

adaptation of large pre-trained models with a fraction of the

original parameters, thus making the fine-tuning process more

efficient and cost-effective. Further research has been

conducted to optimize LoRA. For instance, DoRA [13]

decomposes the original weight into magnitude and direction

components, updating the direction component using LoRA.

LoRA+ [14] employs different learning rates for the two low-

rank matrices to enhance learning efficiency. Additionally,

ReLoRA [15] incorporates LoRA into the LLM during

training to raise the rank of the final ΔW. QLoRA [16] extends

LoRA by integrating 4-bit quantization, further reducing

memory usage and enabling fine-tuning of larger models on

resource-constrained hardware.

These studies indicate that integrating these techniques can

maintain acceptable accuracy while significantly reducing

resource requirements. Research by [17] on Q8BERT, which

integrates quantization with other optimization techniques,

supports the potential for such combined approaches. The

integration of model quantization and LoRA represents a

promising direction for optimizing the fine-tuning of LLMs.

Future research should focus on developing robust techniques

to combine these methods effectively, ensuring minimal trade-

offs between efficiency and model performance.

III. METHODOLOGY

Dataset Engineering begins the process. This phase is essential

for preparing the data used to fine-tune the model. It involves

dataset collection, data cleaning, and data formatting. Dataset

collection entails gathering a comprehensive and representative

set of textual data relevant to the task. Depending on the target

30 Journal of Electronics and Computer Science

application, this data might be sourced from various domains.

Since we aim to fine-tune by coding dataset, we collect

“CodeAlpaca-20k” [18] from Hugging Face. Following

collection, data cleaning processes are implemented to remove

noise, correct errors, and filter out irrelevant content, ensuring

the quality and relevance of the dataset. Data formatting then

converts this cleaned data into a format compatible with the

LLaMA2 model, typically involving tokenization and the

creation of input-output pairs suitable for the training process.

Once the dataset is prepared, the next step involves loading the

pre-trained LLaMA2 model. LLaMA2, like other large

language models, is trained on extensive corpora to capture

diverse linguistic patterns and knowledge. However, for tasks

like sentiment analysis, coding answers, or machine translation,

fine-tuning is necessary to adapt its generalized knowledge.

LoRA (Low-Rank Adaptation) efficiently facilitates this fine-

tuning process. Before applying LoRA, the LLaMA2 model

undergoes Quantization to reduce its computational

complexity and memory footprint. Quantization involves

converting the high precision floating-point weights of the

model into lower precision representations.

We experimented with different quantization techniques, such

as 32-bit floating point to 16- bit, 8-bit, and NF4-bit. These

techniques help in significantly reducing the memory

requirements while retaining the model‟s performance. Let W

represents the original weight matrix and Q(W) the quantized

weights. The quantization can be represented as:

 () ()
 () ()
 () ()

Fig.1. Overview of our method

where „Quantize‟ is the function that maps the high-precision

weights to lower precision. After quantization, the weights are

more memory-efficient, enabling faster computations and

reduced hardware requirements. With the model quantized,

LoRA introduces trainable low-rank matrices into each layer of

the transformer architecture (decoder only) of the model.

Instead of updating all the parameters of the already large and

complex model, It focuses on a smaller set of additional

parameters. This approach is based on the observation that

changes required for task-specific fine-tuning can often be

represented as low-rank updates to the pre-trained weights. Let

Wq represents the quantized weight matrix and A and B be the

low-rank matrices. The fine-tuning update can be expressed as-

Or,

Fig. 2. Combination of Quantization and LoRA

By only updating these low-rank matrices, we significantly

reduce the number of parameters that need to be trained, thus

saving computational resources and reducing memory usage.

During the fine-tuning process of the LLaMA2 model, we

keep the original pre-trained weights frozen. We experiment

with different ranks, such as 1, 2, 4, 8, 16, and 64, for the low-

rank matrices to balance the trade-off between model

adaptation and computational efficiency. The input data is

passed through the model, and gradients are calculated only

for the parameters within the LoRA matrices. This selective

updating is highly efficient and ensures that the pre-trained

knowledge encoded in the original model is preserved while

adapting the model to new tasks. The training typically

involves optimizing a loss function, such as cross-entropy, that

quantifies the gap between the projected outputs and the actual

target values. The cross-entropy loss L for a set of predictions

 ̂ and true labels y is given by-

 ∑

 (̂)

Gradient descent algorithms, such as Adam, are used to

minimize this loss function-

results

Volume 16, Month 2025 31

Regularization strategies, such as dropout or weight

decomposition, are typically applied during training to

minimize overfitting. Overfitting happens when the model

learns to perform very well on the training data but fails to

generalize to new, unknown data. Dropout, in particular, is a

strategy where random neurons are momentarily deleted from

the network during training, driving the model to acquire more

robust and generalizable characteristics. Hyperparameters,

such as learning rate, batch size, and the rank of the adaptation

matrices, can considerably affect the training efficiency and

the final model performance. Each combination of

hyperparameters is assessed on a validation set, and the best-

performing configuration is picked for the final training run.

After the training phase, the fine-tuned model undergoes

rigorous evaluation using a validation set that was not seen

during training. This evaluation helps in assessing the model's

performance on the specific task. If the performance is

unsatisfactory, iterative adjustments are made, including re-

tuning hyperparameters, modifying the dataset, or even

altering the model architecture by adjusting the size or number

of LoRA matrices. Finally, the model is tested on a separate

test set to ensure its robustness and generalizability. The

performance on the test set provides a final assessment of the

model's capability to handle the specific task effectively.

Following fine-tuning, the resultant fine-tuned LLM can

process user inputs, generate relevant responses, and be ready

for inference tasks. This fine-tuned model incorporates the

specific knowledge and patterns required for the target

application (Coding Assistant), ensuring it can handle the

specific queries and tasks effectively.

The final phase involves integrating the fine-tuned LLM into a

user-facing application. In this case, we utilize a Gradio web

interface as the user interface (UI). The UI is designed to

capture user inputs and display the model's responses. When a

user interacts with the UI, their input is sent to the model

inference (prediction engine), which processes the input using

the fine-tuned LLM. The prediction engine utilizes the fine-

tuned model to generate and return responses based on the

user‟s input, ensuring an interactive and responsive user

experience. Additionally, we have implemented prompt

engineering and session holding to maintain context and

continuity during user interactions, further enhancing the

usability and effectiveness of the application.

Fig.3. Comparison of GPU memory requirements

Figure 3 illustrates the GPU memory requirements for

traditional full fine-tuning of a 7B parameter model compared

to our optimized method using LoRA and quantization. The

optimized method significantly reduces computational needs,

making it 12 times more efficient in terms of GPU memory

requirements.

IV. RESULTS AND EVALUATION

The evaluation examines key performance metrics,

including GPU usage, learning rate dynamics, training loss,

and overall model performance, to assess the efficiency of

fine-tuning. We conducted experiments across various

configurations of quantization and LoRA to analyze trade-offs

in memory efficiency, training time, and model accuracy. The

study explores three setups: (i) Quantization Only, applying 4-

bit and 8-bit post-training quantization without fine-tuning; (ii)

LoRA Only, evaluating different LoRA ranks (1, 4, 8, 16, 64)

without quantization; and (iii) Combined Quantization +

LoRA. We integrated both quantization (4-bit and 8-bit) with

LoRA fine-tuning at different ranks, aiming to achieve optimal

trade-offs between memory reduction and performance

retention.

GPU memory consumption varied significantly across the

tested configurations. Quantization alone reduced memory

requirements considerably, with 8-bit quantization lowering

the demand to ~28 GB and 4-bit quantization further reducing

it to ~15 GB. LoRA-only configurations exhibited varying

memory footprints depending on the rank used. Lower-rank

LoRA settings such as rank 1, 4 demonstrated minimal

overhead compared to the base model, while higher-rank

LoRA such as rank 64 incurred additional memory usages.

The most significant reduction in memory consumption was

observed in the Combined Quantization + LoRA setting,

where 4-bit quantization with LoRA rank 16 required only

10.8 GB of GPU memory. This configuration provided the

best balance between efficiency and fine-tuning

effectiveness. Figure 4 illustrates the memory consumption of

the best configuration.

 Fig.4. GPU usage during fine-tuning

Additionally, the fine-tuning process of this best combination

of LoRA and quantization required nearly 3 hours to

complete.

Training stability and convergence rates were monitored

across all configurations. Across different setups, lower-rank

LoRA settings (ranks 1, 4) converged faster but exhibited

limited adaptation, while higher-rank LoRA (ranks 16, 64)

32 Journal of Electronics and Computer Science

achieved better fine-tuning but at the cost of increased

resource usage. Quantization alone (without LoRA) showed a

slight degradation in model performance due to reduced

numerical precision. However, integrating LoRA effectively

compensated for this loss, particularly in the 4-bit quantization

+ LoRA rank 16 configurations, which achieved near-

baseline performance while maintaining a lightweight

footprint. Figure 5 presents the training loss progression over

5000 steps for the best-performing configuration.

Fig.5. Training loss over steps

Figure 6 shows the learning rate during the fine-tuning process

of the best combination 4-bit quantization + LoRA rank 16. It

follows a cosine learning rate schedule, which starts high and

smoothly decreases over the 5000 training steps. The smooth

decay pattern indicates effective learning rate management,

leading to faster convergence and better model generalization.

Fig. 6. Learning rate curve

Finally, loading a 7 billion parameter model of LLaMA-2 in

FP32 requires approximately 28 GB of GPU memory, and

fine-tuning needs around 4 x 28 = 112 GB of GPU memory

[8]. In contrast, best configuration of our method needs only

10.8 GB of GPU memory during fine-tuning. Theoretically,

Figure 3 estimates that 9.3 GB of GPU memory is needed to

fine-tune the 7B LLaMA-2 model using our method.

Practically speaking, from Figure 4, the actual requirement is

10.8 GB, demonstrating the successful implementation of our

approach.

V. CONCLUSION

In conclusion, our study demonstrates that combining

quantization and Low-Rank Adaptation significantly reduces

GPU memory requirements while maintaining or improving

the performance of large language models. We fine-tuned the

7B LLaMA-2 model on code alpaca 20k dataset using only

10.8 GB of GPU memory, compared to the 112 GB needed for

traditional methods. This approach enables advanced LLM

capabilities in resource-constrained environments,

democratizing access to powerful on-device AI tools. The

developed user interface for real-time model interaction

underscores the practical deployment potential of these

techniques, making sophisticated language models accessible

for everyday tasks.

REFERENCES

[1] S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi, “Metaicl: Learning
to learn in context,” arXiv preprint arXiv:2110.15943, 2021.

[2]] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A.

M. Dai, and Q. V. Le, “Finetuned language models are zero-shot
learners,” arXiv preprint arXiv:2109.01652, 2021

[3] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A.

Arunkumar, A. Ashok, A. Selvan Dhanasekaran, A. Naik, D. Stap, and
others, “Super-naturalinstructions: Generalization via declarative

instructions on 1600+ nlp tasks,” arXiv preprint arXiv:2204.07705,

2022.

[4] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C.

Zhang, S. Agarwal, K. Slama, A. Ray, and others, “Training language

models to follow instructions with human feedback,” Advances in neural
information processing systems, vol. 35, pp. 27730–27744, 2022

[5] A. Askell, Y. Bai, A. Chen, D. Drain, D. Ganguli, T. Henighan, A.

Jones, N. Joseph, B. Mann, N. DasSarma, and others, “A general
language assistant as a laboratory for alignment,” arXiv preprint

arXiv:2112.00861, 2021.

[6] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D.
Drain, S. Fort, D. Ganguli, T. Henighan, and others, “Training a helpful

and harmless assistant with reinforcement learning from human

feedback,” arXiv preprint arXiv:2204.05862, 2022.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.

[8] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N.

Bashlykov, S. Batra, P. Bhargava, S. Bhosale, and others, “Llama 2:

Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[9] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew

Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko,
“Quantization and training of neural networks for efficient

integerarithmetic-only inference,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 2704–2713.

[10] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,

and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[11] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B.

Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, and others, “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[12] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, S. Paul, and B. Bossan,
“PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods,”

GitHub repository, 2022. [Online]. Available: https://github.com/

huggingface/peft.

[13] S.-Y. Liu, C.-Y. Wang, H. Yin, P. Molchanov, Y.-C. F. Wang, K.- T.

Cheng, and M.-H. Chen, “DoRA: Weight-Decomposed Low-Rank

Adaptation,” arXiv preprint arXiv:2402.09353, 2024.

[14] S. Hayou, N. Ghosh, and B. Yu, “LoRA+: Efficient Low Rank

Adaptation of Large Models,” arXiv preprint arXiv:2402.12354, 2024

Volume 16, Month 2025 33

[15] V. Lialin, S. Muckatira, N. Shivagunde, and A. Rumshisky, “ReLoRA:

High-Rank Training Through Low-Rank Updates,” in Workshop on
Advancing Neural Network Training: Computational Efficiency,

Scalability, and Resource Optimization (WANT@ NeurIPS 2023), 2023.

[16] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA:
Efficient Finetuning of Quantized LLMs,” in Advances in Neural

Information Processing Systems, vol. 36, 2024.

[17] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert:
Quantized 8bit bert,” in 2019 Fifth Workshop on Energy Efficient

Machine Learning and Cognitive Computing-NeurIPS Edition (EMC2-

NIPS), pp. 36–39, IEEE, 2019.

[18] S. Chaudhary, “Code Alpaca: An Instruction-following LLaMA model

for code generation,” GitHub repository, 2023. [Online]. Available:

https: //github.com/sahil280114/codealpaca.

Biography

Mahbub Islam Mahim has completed his B.Sc. and M.Sc.
in Computer Science and Engineering from Jahangirnagar

University, Dhaka, Bangladesh in 2021 and 2023

respectively. He was awarded the Bronze Medal in the
International University Physics Competition 2021. During

his undergraduate studies, he was actively involved in

competitive programming. Currently, he works as a Software Engineer at the

Samsung R&D Institute Bangladesh, where he is also engaged in developing
patents and other innovation works. His research interests include Advanced

Machine Learning, Natural Language Processing, Natural Language

Generation, Computer Vision and Image Processing, Large Language Models,
Trustworthy and Efficient AI, and Software Engineering.

Dr. Jugal Krishna Das has completed his B.Sc., M.Sc.,
and Ph.D. degrees in Computer Engineering from Donetsk

Technical University, Ukraine. He is currently a Professor

in the Department of Computer Science and Engineering
at Jahangirnagar University, Dhaka, Bangladesh. Dr.

Das‟s research interests include Computer Networks,

Machine Learning, Natural Language Processing, and
Software Engineering. His key fields of interest encompass System Design

and Analysis, E-commerce, Management Information Systems, Database

Management Systems, Computer Architecture, Data Structures and
Algorithms, Microprocessors, Computer Networking, Discrete Mathematics,

Digital Logic Design, Operating Systems, Parallel and Distributed Systems,

Internet Engineering, and IP Technology. He has 48 publications in Computer
Science and Engineering in national and international journals and conference

proceedings.

34 Journal of Electronics and Computer Science

