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Abstract—We present an optimized fine-tuning process for 

large language models (LLMs) that combines Low-Rank 

Adaptation (LoRA) and Quantization. Traditional full fine-

tuning methods are computationally expensive, requiring 

significant GPU memory, which limits their accessibility. In our 

approach, we first quantize the LLaMA-2 7B model and then 

apply LoRA fine-tuning to that quantized model. We 

demonstrate that the combination of quantization and LoRA 

significantly reduces GPU memory requirements while 

maintaining model performance. Through rigorous experiments 

of different combinations of quantization and LoRA, we 

successfully fine-tuned the 7B LLaMA-2 model on CodeAlpaca-

20k dataset with only 10.8 GB of GPU memory using the best 

combination of quantization (4-bit) and LoRA (rank 16), 

compared to the 112 GB required by traditional methods. We 

further developed an inference system using this optimized fine-

tuned model for practical deployment.  

Index Terms— Generative Artificial Intelligence, Low-Rank 

Adaptation, Quantization, Optimization, LLaMA-2, Code 

Alpaca. 

I. INTRODUCTION 

The rapid evolution of large language models (LLMs) has 

revolutionized natural language processing, allowing 

significant advancements across a myriad of applications. 

Refining LLMs by finetuning is well acknowledged for 

greatly boosting their performance [1-4] on specific 

knowledge and for adjusting behaviors to accomplish desired 

results [4-6]. Despite their impressive capabilities, the 

substantial computational and memory demands associated 

with fine-tuning these models present a formidable challenge 

[7]. For instance, conventional 16-bit fine-tuning of a LLaMA 

65B parameter model [8] takes more than 780 GB of GPU 

memory and a 7B parameter model takes 112 GB. So, 

optimizing the fine-tuning process is crucial for leveraging 

LLMs in resource-constrained environments. 

This paper explores two key methodologies-model 

quantization and Low-Rank Adaptation (LoRA)-that address 

this challenge by reducing the computational burden while 

maintaining model performance [9-10]. Model quantization 

reduces the precision of model weights, thus significantly 

decreasing memory usage and increasing inference speed, 

while LoRA achieves efficient fine-tuning by approximating 

weight updates with low-rank matrices. Through a detailed 

examination of these techniques and their integration, this 

research aims to enhance the efficiency of fine-tuning large 

language models, paving the way for broader accessibility and 

practical deployment in various domains. 

II. LITERATURE REVIEW  

Recent advancements in large language models (LLMs) have 

led to significant improvements in natural language processing 

 
 

tasks. However, the computational and memory requirements 

for fine-tuning these models remain substantial. This review 

examines current methodologies for optimizing the fine-tuning 

process, focusing on model quantization and Low-Rank 

Adaptation. Model quantization reduces the precision of the 

weights and activations, typically from 32-bit floating-point to 

lower bit-width representations such as 16-bit, 8-bit, or NF4-

bits. Quantization can significantly decrease the model size 

and increase inference speed with minimal loss in accuracy. 

Some research [9] demonstrates that post-training quantization 

can yield up to a 4x reduction in model size with negligible 

performance degradation. Mixed-precision training [11] 

combines high and low-precision operations to balance speed 

and accuracy effectively. 

LoRA is a widely used PEFT [12] technique for optimizing 

LLM because of its wide range of applications and strong 

results as compared to other approaches. It focuses on efficient 

fine-tuning by approximating the weight updates using low-

rank matrices. LoRA showed that it could drastically reduce 

the number of trainable parameters while maintaining model 

performance [10]. It inserts low-rank decomposition matrices 

into each layer of the transformer architecture, enabling the 

adaptation of large pre-trained models with a fraction of the 

original parameters, thus making the fine-tuning process more 

efficient and cost-effective. Further research has been 

conducted to optimize LoRA. For instance, DoRA [13] 

decomposes the original weight into magnitude and direction 

components, updating the direction component using LoRA. 

LoRA+ [14] employs different learning rates for the two low-

rank matrices to enhance learning efficiency. Additionally, 

ReLoRA [15] incorporates LoRA into the LLM during 

training to raise the rank of the final ΔW. QLoRA [16] extends 

LoRA by integrating 4-bit quantization, further reducing 

memory usage and enabling fine-tuning of larger models on 

resource-constrained hardware. 

These studies indicate that integrating these techniques can 

maintain acceptable accuracy while significantly reducing 

resource requirements. Research by [17] on Q8BERT, which 

integrates quantization with other optimization techniques, 

supports the potential for such combined approaches. The 

integration of model quantization and LoRA represents a 

promising direction for optimizing the fine-tuning of LLMs. 

Future research should focus on developing robust techniques 

to combine these methods effectively, ensuring minimal trade-

offs between efficiency and model performance.    

III. METHODOLOGY 

Dataset Engineering begins the process. This phase is essential 

for preparing the data used to fine-tune the model. It involves 

dataset collection, data cleaning, and data formatting. Dataset 

collection entails gathering a comprehensive and representative 

set of textual data relevant to the task. Depending on the target 
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application, this data might be sourced from various domains. 

Since we aim to fine-tune by coding dataset, we collect 

“CodeAlpaca-20k” [18] from Hugging Face. Following 

collection, data cleaning processes are implemented to remove 

noise, correct errors, and filter out irrelevant content, ensuring 

the quality and relevance of the dataset. Data formatting then 

converts this cleaned data into a format compatible with the 

LLaMA2 model, typically involving tokenization and the 

creation of input-output pairs suitable for the training process. 

Once the dataset is prepared, the next step involves loading the 

pre-trained LLaMA2 model. LLaMA2, like other large 

language models, is trained on extensive corpora to capture 

diverse linguistic patterns and knowledge. However, for tasks 

like sentiment analysis, coding answers, or machine translation, 

fine-tuning is necessary to adapt its generalized knowledge.  

LoRA (Low-Rank Adaptation) efficiently facilitates this fine-

tuning process. Before applying LoRA, the LLaMA2 model 

undergoes Quantization to reduce its computational 

complexity and memory footprint. Quantization involves 

converting the high precision floating-point weights of the 

model into lower precision representations.  

We experimented with different quantization techniques, such 

as 32-bit floating point to 16- bit, 8-bit, and NF4-bit. These 

techniques help in significantly reducing the memory 

requirements while retaining the model‟s performance. Let W 

represents the original weight matrix and Q(W) the quantized 

weights. The quantization can be represented as: 
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      ( )                       ( ) 

 

Fig.1. Overview of our method 

where „Quantize‟ is the function that maps the high-precision 

weights to lower precision. After quantization, the weights are 

more memory-efficient, enabling faster computations and 

reduced hardware requirements. With the model quantized, 

LoRA introduces trainable low-rank matrices into each layer of 

the transformer architecture (decoder only) of the model. 

Instead of updating all the parameters of the already large and 

complex model, It focuses on a smaller set of additional 

parameters. This approach is based on the observation that 

changes required for task-specific fine-tuning can often be 

represented as low-rank updates to the pre-trained weights. Let 

Wq represents the quantized weight matrix and A and B be the 

low-rank matrices. The fine-tuning update can be expressed as- 
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Fig. 2. Combination of Quantization and LoRA 

By only updating these low-rank matrices, we significantly 

reduce the number of parameters that need to be trained, thus 

saving computational resources and reducing memory usage. 

During the fine-tuning process of the LLaMA2 model, we 

keep the original pre-trained weights frozen. We experiment 

with different ranks, such as 1, 2, 4, 8, 16, and 64, for the low-

rank matrices to balance the trade-off between model 

adaptation and computational efficiency. The input data is 

passed through the model, and gradients are calculated only 

for the parameters within the LoRA matrices. This selective 

updating is highly efficient and ensures that the pre-trained 

knowledge encoded in the original model is preserved while 

adapting the model to new tasks. The training typically 

involves optimizing a loss function, such as cross-entropy, that 

quantifies the gap between the projected outputs and the actual 

target values. The cross-entropy loss L for a set of predictions 

 ̂ and true labels y is given by- 

   ∑  
 

   (  ̂) 

Gradient descent algorithms, such as Adam, are used to 

minimize this loss function- 
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Regularization strategies, such as dropout or weight 

decomposition, are typically applied during training to 

minimize overfitting. Overfitting happens when the model 

learns to perform very well on the training data but fails to 

generalize to new, unknown data. Dropout, in particular, is a 

strategy where random neurons are momentarily deleted from 

the network during training, driving the model to acquire more 

robust and generalizable characteristics. Hyperparameters, 

such as learning rate, batch size, and the rank of the adaptation 

matrices, can considerably affect the training efficiency and 

the final model performance. Each combination of 

hyperparameters is assessed on a validation set, and the best-

performing configuration is picked for the final training run. 

After the training phase, the fine-tuned model undergoes 

rigorous evaluation using a validation set that was not seen 

during training. This evaluation helps in assessing the model's 

performance on the specific task. If the performance is 

unsatisfactory, iterative adjustments are made, including re-

tuning hyperparameters, modifying the dataset, or even 

altering the model architecture by adjusting the size or number 

of LoRA matrices. Finally, the model is tested on a separate 

test set to ensure its robustness and generalizability. The 

performance on the test set provides a final assessment of the 

model's capability to handle the specific task effectively. 

Following fine-tuning, the resultant fine-tuned LLM can 

process user inputs, generate relevant responses, and be ready 

for inference tasks. This fine-tuned model incorporates the 

specific knowledge and patterns required for the target 

application (Coding Assistant), ensuring it can handle the 

specific queries and tasks effectively. 

The final phase involves integrating the fine-tuned LLM into a 

user-facing application. In this case, we utilize a Gradio web 

interface as the user interface (UI). The UI is designed to 

capture user inputs and display the model's responses. When a 

user interacts with the UI, their input is sent to the model 

inference (prediction engine), which processes the input using 

the fine-tuned LLM. The prediction engine utilizes the fine-

tuned model to generate and return responses based on the 

user‟s input, ensuring an interactive and responsive user 

experience. Additionally, we have implemented prompt 

engineering and session holding to maintain context and 

continuity during user interactions, further enhancing the 

usability and effectiveness of the application. 

 

Fig.3. Comparison of GPU memory requirements 

Figure 3 illustrates the GPU memory requirements for 

traditional full fine-tuning of a 7B parameter model compared 

to our optimized method using LoRA and quantization. The 

optimized method significantly reduces computational needs, 

making it 12 times more efficient in terms of GPU memory 

requirements. 

IV. RESULTS AND EVALUATION 

The evaluation examines key performance metrics, 

including GPU usage, learning rate dynamics, training loss, 

and overall model performance, to assess the efficiency of 

fine-tuning. We conducted experiments across various 

configurations of quantization and LoRA to analyze trade-offs 

in memory efficiency, training time, and model accuracy. The 

study explores three setups: (i) Quantization Only, applying 4-

bit and 8-bit post-training quantization without fine-tuning; (ii) 

LoRA Only, evaluating different LoRA ranks (1, 4, 8, 16, 64) 

without quantization; and (iii) Combined Quantization + 

LoRA. We integrated both quantization (4-bit and 8-bit) with 

LoRA fine-tuning at different ranks, aiming to achieve optimal 

trade-offs between memory reduction and performance 

retention. 

GPU memory consumption varied significantly across the 

tested configurations. Quantization alone reduced memory 

requirements considerably, with 8-bit quantization lowering 

the demand to ~28 GB and 4-bit quantization further reducing 

it to ~15 GB. LoRA-only configurations exhibited varying 

memory footprints depending on the rank used. Lower-rank 

LoRA settings such as rank 1, 4 demonstrated minimal 

overhead compared to the base model, while higher-rank 

LoRA such as rank 64 incurred additional memory usages. 

The most significant reduction in memory consumption was 

observed in the Combined Quantization + LoRA setting, 

where 4-bit quantization with LoRA rank 16 required only 

10.8 GB of GPU memory. This configuration provided the 

best balance between efficiency and fine-tuning 

effectiveness.  Figure 4 illustrates the memory consumption of 

the best configuration. 

 

                        Fig.4. GPU usage during fine-tuning 

Additionally, the fine-tuning process of this best combination 

of LoRA and quantization required nearly 3 hours to 

complete. 

Training stability and convergence rates were monitored 

across all configurations. Across different setups, lower-rank 

LoRA settings (ranks 1, 4) converged faster but exhibited 

limited adaptation, while higher-rank LoRA (ranks 16, 64) 
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achieved better fine-tuning but at the cost of increased 

resource usage. Quantization alone (without LoRA) showed a 

slight degradation in model performance due to reduced 

numerical precision. However, integrating LoRA effectively 

compensated for this loss, particularly in the 4-bit quantization 

+ LoRA rank 16 configurations, which achieved near-

baseline performance while maintaining a lightweight 

footprint. Figure 5 presents the training loss progression over 

5000 steps for the best-performing configuration.  

 

Fig.5. Training loss over steps 

Figure 6 shows the learning rate during the fine-tuning process 

of the best combination 4-bit quantization + LoRA rank 16. It 

follows a cosine learning rate schedule, which starts high and 

smoothly decreases over the 5000 training steps. The smooth 

decay pattern indicates effective learning rate management, 

leading to faster convergence and better model generalization. 

 

Fig. 6. Learning rate curve 

Finally, loading a 7 billion parameter model of LLaMA-2 in 

FP32 requires approximately 28 GB of GPU memory, and 

fine-tuning needs around 4 x 28 = 112 GB of GPU memory 

[8]. In contrast, best configuration of our method needs only 

10.8 GB of GPU memory during fine-tuning. Theoretically, 

Figure 3 estimates that 9.3 GB of GPU memory is needed to 

fine-tune the 7B LLaMA-2 model using our method. 

Practically speaking, from Figure 4, the actual requirement is 

10.8 GB, demonstrating the successful implementation of our 

approach. 

V. CONCLUSION 

In conclusion, our study demonstrates that combining 

quantization and Low-Rank Adaptation significantly reduces 

GPU memory requirements while maintaining or improving 

the performance of large language models. We fine-tuned the 

7B LLaMA-2 model on code alpaca 20k dataset using only 

10.8 GB of GPU memory, compared to the 112 GB needed for 

traditional methods. This approach enables advanced LLM 

capabilities in resource-constrained environments, 

democratizing access to powerful on-device AI tools. The 

developed user interface for real-time model interaction 

underscores the practical deployment potential of these 

techniques, making sophisticated language models accessible 

for everyday tasks. 
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