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Abstract-This paper addresses the issue of allocation of tasks in 

groups of mobile agents. The paper presents task allocation 

strategies based on the behavior of real ant colonies. Agent based 

modeling approach is used to simulate the behavior of the ant 

colonies. The strategies used are evaluated in order to shed lights 

on the circumstances when a particular strategy works better. 

Experimental results indicate that the results are consistent with 

the biological equivalents.  
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I. INTRODUCTION 

   Dividing labor and allocating tasks on the fly is often 
considered to be an important problem in the field of multi-
agent and multi-robot systems where more than one agent (or 
robot) work together collectively in order to carry out a range 
of tasks. Dynamic task allocation has found a number of 
application areas in the field of swarm robotics (SR) – a field 
that has recently gained enormous interests among scientists 
and researchers from disciplines as different as biology, 
engineering and social science. Swarm robotics (the robotics 
application of swarm intelligence, SI) [1, 2] studies how a large 
number of relatively simple agents interact with neighboring 
agents and the environment in vicinity to create some collective 
behavior. One of the major inspirations of swarm robotics lies 
in the use of swarms of robots (or agents) to manage and carry 
out more than one task efficiently.  

   Most of the work related to SR and SI uses relatively small 
number of agents. In this paper, we describe a simulated system 
comprising of complex environment and more than one agent 
interacting locally. Agent based modeling (ABM) techniques 
have been used to simulate the system as it helps in detailing 
the local interactions and behavioral rules of the agents. Two 
strategies of task allocation (one in which the agents use only 
stigmergic interaction and the second in which the agents use 
explicit communication) are introduced in this paper and their 
performances are then evaluated. The strategies employed are 
inspired by the ant colony behavior. The novelty of this paper 
is threefold: (1) a more complex realistic system has been 
developed and described than described elsewhere, (2) two 
strategies of task allocations were developed in the light of ant 
colony behavior, and (3) their performance is evaluated and 
compared with that of real ant colony.  

The remaining of this paper is organized as follows: Section 
II provides the background of the paper. Section III describes 
the model proposed while in section IV the results obtained are 
described. Finally in section V, the paper is concluded with 
remarks on our future work.  

II. BACKGROUND 

   Division of labor, within the context of multi-agent systems 
and eusocial insects, is often referred to as one of the most 
conspicuous features for the organization and success of the 
colony [3, 4]. Social insects such as ants display sophisticated 
mechanisms for dividing labor. Demand for different tasks of 
the colony varies frequently depending on various internal and 
external factors and the colony has to react to the demand by 
rearranging part of its workforce in a way so as to function 
efficiently. Individual ants do not have the global information 
of the environment and hence cannot react immediately to the 
changes. However, ants interact with the neighboring ants 
(either via the environment or directly) allowing the 
information to pass over the colony.  

   The basic form of division of labor exhibited by ants is the 
reproductive divisions of labor where a few individuals (often 
limited to only one individual – the queen) are responsible for 
reproductive tasks while the remaining are classed as workers. 
Beyond this basic form of division of labor, there exists further 
division of labors among workers. Bonabeau and his 
colleagues, in 1999 [5], proposed that the division of labor 
among workers can take three (not necessarily mutually 
exclusive) basic forms: 1) worker polymorphism, 2) age 
polyethism and 3) individual variability.  

   In worker polymorphism, physical castes evolve due to the 
existence of anatomically distinct ants within the same colony. 
They are also found to be biased towards some sets of tasks 
depending on their morphology.  

   Age polyethism embraces the ideology that the task carried 
out by ants is not fixed over its lifetime rather a function of 
their age. Many species of ants exhibit age polyethism 
including Pogonomyrmex barbatus, Cataglyphis bicolor and 
Oecophylla smaragdina [3, 6].  

   Individual differences towards task preferences also exist. 
The differences in individuals in the preference for task 
selection is a result of many factors including that of past 
experience [e.g. 7], variation in the genes [8, 9] and physiology 
[10]. Grouping the individuals with respect to their task 
preference generate what are called behavioral castes. For 
further information about castes and division of labor, please 
refer to [4, 5]. 

   The last three decades have witnessed the development of a 
number of models trying to establish the mechanisms of the 
selection of tasks in social insects such as ants. These models 
differ from each other in many aspects including worker-
worker interactions, motivational state of the worker, spatial 
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arrangements of the workers in the nest and also the learning 
parameters. For further details, please refer to [11, 12]. Out of 
these models, fixed response threshold and adaptive response 
threshold models are found to be biologically more plausible 
and are embraced by entomologists wholeheartedly.  

   In a fixed response threshold model, each agent has some 
fixed threshold for every task. If the stimulus of a particular 
task exceeds the corresponding threshold of the agent, the agent 
reacts by selecting the task and performing it. When an agent 
performs a task, it lowers the stimulus for that particular task. 
Thus, if an agent A has a lower threshold for a particular task T 
than another agent B, then A not only responds sooner to the 
task T but also reduces the task – thus it can so happen that the 
stimulus of the task T never reaches the threshold of agent B 
and therefore B never performs that task. Thus, small variation 
of response threshold can result in the difference in the 
frequency of task performance and give rise to the behavioral 
castes.  

   Fixed response threshold model assumes that the response 
threshold of a worker is fixed and does not change over time. 
However, this is not entirely true for many species of ants 
including ponerine ants Ectatomma ruidum [7] and harvester 
ants Pogonomyrmex barbatus[13]. In the adaptive response 
threshold model, when a worker performs a task successfully, 
the threshold for the particular task is reduced by a learning 

factor t. Similarly if the worker is unsuccessful in 
accomplishing a task or not receiving stimuli for a long time, 
the worker reduces the probability of carrying out the task by 

increasing the threshold by a factor t called the forgetting 
parameter. The constant learning and forgetting of tasks 
eventually result in the specialization of workers within the 
colony.  

   Task allocation is a fundamental area in the field of swarm 
robotics [14 – 19]. Much of the work pertaining to dynamic 
allocation of labor in response to the change in the environment 
or demand of a particular task is strongly inspired by the 
behavior of social insects. An early example of the work 
carried out in this area is by Krieger and Billeter [20] where 
they used fixed response threshold mechanisms in Khepera 
robots to forage when the energy in the nest is low. Labella 
[21] and Liu and colleagues [22] used adaptive response 
threshold mechanisms to allow the robots to either forage or 
rest. Yongming and colleagues [18] used a fixed response 
threshold model to develop a system where simulated robots 
can autonomously decide whether to leave the nest and forage 
or not. Jones and Matarić [16] used a simple adaptation rule to 
vary the propensity for foraging two types of pucks (red puck 
or green puck) depending on their ratio of availability.  
Ducatelle and colleagues [14] presented two task allocation 
methods (light based task allocation method and gossip based 
task allocation method) for two types of heterogeneous robots 
working together to complete a task. The types of robots 
involved are Footbots(wheeled robots) and Eyebots (flying 
robots). The Eyebots execute high level search to find targets in 
a bounded environment. Once the target is found, Eyebots visit 
the targeted site and attract the Footbots to come to the area to 
carry out the tasks. In the light based task allocation method, 
the robots use multi-colored LEDs placed around their bodies 
to influence others’ behavior.  Momen and Sharkey used ABM 

to devise task allocation strategies in groups of heterogeneous 
agents [12, 17]. 

III. PROPOSED MODEL 

   ABM has been embraced in order to detail the behavioral 
rules for the agents and also to evaluate the macroscopic 
behavior that emerges out of the local interactions among the 
neighboring agents and also between the agents and the 
environment in the vicinity. 

   The model proposed in this paper consists of a 2D grid world 
populated with three types of agents (dynamic foragers and 
brood carers and static brood members), a nest comprising of 
four chambers (dump area, brood carer chamber, brood 
chamber and foragers’ resting area), stimuli (chemical signals, 
chambers’ odor) and food items initially located at the top right 
hand corner of the environment. The topology of the world is 
non-torroidal – more specifically referred to as “box” as the 
world is bounded in all dimensions. The space is treated in 

discrete patches (71  51) however the movement of the 
dynamic agents is modeled in continuous space so that at each 
time step t, each agent’s floating point coordinate is mapped to 
an integer type coordinate of the local patch. Chemical signals 
(pheromones and shouting chemical) are emitted by agents 
(laden foragers while returning to the nest and hungry brood 
members) while unique odors are emitted from the different 
chambers of the nest. Each agent possesses orientation and 
follows simple local rules as described later. Brood members 
are immobile and can either be in the hungry or non-hungry 
state depending on the hunger level of the individual. Foragers 
and brood carers, on the other hand, are mobile and can 
dynamically switch their roles depending on the need of the 
colony. 

Agents communicate in one of the two ways: 

• Indirect Communication: In this communication 
technique, agents do not communicate with each 
other directly rather communicate passively via 
the environment. Such types of communication are 
very common in social insects and are often 
referred to as stigmergic communication. 

• Explicit Communication: In this communication 
technique, agents not only communicate with each 
other indirectly but also communicate with each 
other directly (e.g. by antennal touch and sound). 

 

Fig.1. Snapshot of the model 
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   The remaining of this section gives a more detailed 
description of the components of the model. 

A. Nest 

   The model consists of a nest (located at the bottom of the 

world) that comprises of four separate chambers. The 

dimensions of the four chambers are as follows: 

Brood chamber and brood-carer chamber: 27 × 7 

Foragers’ resting area: 9 × 7, and  

Dump area (DA): 10 × 6 

Such nest designs (consisting of separate chambers) are 

evident in many species of ants including Pogonomyrmex 

barbatus and leaf cutter ants, Atta colombica. Each of the 

chambers has its own odour. The odour is spread over the 

environment in such a way that its intensity falls linearly from 

its respective centre (the intensity of local stimuli is modelled 

discrete). Thus each of the four types of smells/ odours creates 

a potential gradient uphill towards their respective centre of 

the chamber. 

 

B.  Behavioral Rules 

   Individual agents have limited perception and 

communication range and follow simple local rules.  

 

   Brood: Each brood member can be in one of the two states: 

hungry or non-hungry. Initially all the brood members are in 

the non-hungry state having a randomized hunger level. At 

every simulation time step, the hunger level of each brood 

member increases by its hunger rate (eq. 1) which is 

distributed randomly between 0 and 1 across the population of 

brood members. The difference in the hunger rate in 

individuals allows the brood members to get hungry at 

different instants – thus making the demand for feeding more 

stochastic. Furthermore, this is in line with real ants where the 

hunger rate of the brood members has been found to be a 

function of a number of factors including their appetite, the 

ability to communicate their hunger to the workers and also 

the life-stages of the brood members [Cassill and Tschinkel, 

1999]. When the hunger level of a brood member exceeds 

some threshold (thh), it switches its state to hungry, and seeks 

the attention of the brood carers by emitting a chemical signal 

instantaneously (termed ‘shouting chemical’ here). The 

strength of the shouting chemical is modeled to fall linearly 

with the distance from the hungry brood member so as to have 

its maximum strength at the location of the hungry brood 

member and its minimum at the periphery of the shouting-

radius. The strength of the chemical is zero if the distance 

between a patch and the hungry brood member is more than 

the shouting-radius (eq. 3).  If a hungry brood member is fed 

by a brood carer, the hunger level of the brood member 

decreases by some constant value (100) and when it falls 

below thh, the brood member switches its state back to the 

non-hungry state (eq. 2). In the model, brood members are fed 

upon request i.e. the non-hungry brood members are not fed. 

      
HRHLHL tt +=+1                                                     (1) 

Where 0  HR  1 

=tHS {
ht

ht

thHL

thHL





,0

,1

                                         (2)
 

Where, 

1+tHL is the new hunger level (i.e. at time step t + 1) of the 

brood member, 

tHL is the previous hunger level (i.e. at time step t) of the 

brood member, 

HR  is the hunger rate of the brood, HR ~ U[0,1] 

tHS is the hunger state (at time step t) of the brood 

member; 1 = hungry state and 0 = non-hungry state, and 

hth (= 500) is the threshold parameter of the hunger level. 

                        =SCC {
srx

srxBxA



−

,0

,
                       (3) 

where,  

SCC  is the concentration level of the shouting chemical, 

x  is the Euclidian distance from the centre of the hungry 

brood, 

sr is the shouting radius (= 7 patches in the simulation), 

and A = sr , B = 1. 

   Brood Carers: Brood carers update their thresholds as a 

response to the stimuli perceived. Once a brood carer makes 

the decision to feed a hungry brood member (the decision 

making process is discussed later in this paper), it goes to the 

dump area (DA) of the nest in search of food. It uses its local 

sensing to smell the scent of the dump area at its immediate 

patch ahead, patch left and ahead and patch right and ahead. 

The brood carer then compares the relative strength of the 

scents in the three directions and moves in the direction of the 

strongest scent. If the scents in all the three directions are 

equally high, the brood carer goes forward. This simple local 

interaction with the environment allows the brood carer to 

locate the DA. Once the agent reaches the dump area, it moves 

randomly within it to find a piece of food and when successful 

(i.e. when it is on the same location as that of the food item), 

picks the food item up and travels towards the brood chamber 

following the odour of the brood chamber in search of a 

hungry brood member.  

 
  When the brood carer reaches the brood chamber, it uses the 
potential gradient of the shouting chemical to go uphill in order 
to locate a hungry brood member. After locating a hungry 
brood member, the brood carer feeds it causing the brood 
member’s hunger level to be reduced by a constant value (in 
the simulation, it is assumed that all food items provide the 
same energy). 

   Foragers: The principal task of foragers is to collect food 
items from the environment. They start from their chamber and 
travel randomly in search of food items. If an agent finds a 
piece of food, it picks the food item up, becomes laden, rotates 
1800 and travels towards the dump area of the nest. While 
travelling, both foragers and brood carers wiggle (i.e. move its 
heading by small random angles). Wiggling allows the 
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movement of the foragers and brood carers to be ant like. 
Laden foragers use local sensing to navigate around potential 
gradient to reach the dump area. When a forager picks up a 
food item, the amount of food available in the environment 
decreases. If the amount of food present in the environment 
falls below some specific value (10 units in the model), a 
random amount of food (between 1 and 20) is produced in the 
environment (in random location). Thus the amount of food 
available in the environment never falls to zero. As the laden 
agent travels towards the nest, it drops simulated chemicals 
called pheromones (that both diffuse and evaporate) in the 
environment. Once the agent reaches the DA, it leaves the food 
item there, evaluates what action to carry out next and starts 
executing the task to be carried out. When unladen agents find 
pheromones in the environment, they use the chemical signal to 
travel uphill towards the food source.  If there is not enough 
food available in the environment it would result long 
searching time for the forager to find a food item. If the forager 
takes too long to find a food item, she abandons the foraging 
task, goes back to her chamber and rests for a predefined time.  

C. Task Switching Mechanisms  

  The mobile agents, at any time t, can carry out any of the 

three tasks: foraging, brood caring or resting. Each of the 

mobile agents maintains three threshold parameters: tf 

(threshold for foraging), tr (threshold for resting) and tbc 

(threshold for brood caring). Threshold values, in the 

simulations, are constantly updated to meet the changing 

demand. Updating the thresholds updates the probability for a 

particular task to be chosen by an agent depending on the 

demand of the task and is a widely used technique for 

allocating tasks on the fly [e.g. 5, 17, 21, 22]. We use a simple 

but effective principle (as observed from the behavior of social 

insects) for updating the thresholds:  

 

(1) The threshold value for a particular task is decreased (i.e. 

the probability for carrying out the particular task is increased) 

if either the agent has successfully completed the task (and 

hence is motivated to carry out the same task further) or has 

received a stimulus for that task.  

(2) The threshold value for a particular task is increased if 

either an agent has been unsuccessful in carrying out the task 

or hasn’t experienced a stimulus for a long time.  

The above two principles are built on the behavior that many 

ant species are reported to have displayed [e.g. 4, 5, 10, 11]. 

For a greater details of the parameters used, please refer to 

Table III. 

The selection of which task to carry out next is modeled in the 

following way: 

(1) Let },,min{arg bcrfxtcarryoutne tttT = where Tcarryoutnext is 

the next task candidate.  

(2) A random number, R, is generated between 0 and 1. If R 

<= 0.7, Tcarryoutnext is selected otherwise the agent would 

continue carrying out the task it is currently doing. 

Thresholds of mobile agents are constantly been updated in 

the model (described below) over the simulation period. 

Whenever a threshold value needs to be changed (either 

increased or decreased), it is adjusted by a small value 

(adaptation-rate = 0.09). Using the principles adopted for 

updating thresholds, the following behavioral rules for 

foragers and brood carers are formulated when they 

communicate indirectly:            

1. If an agent perceives the shouting chemical, it realizes that a 

brood member needs to be fed. The stimulus of feeding the 

brood member causes the agent to reduce its tbc. 

2. When an agent is at the DA, it knows the amount of food 

available there from the cumulative smell of it. If the amount 

of food at DA is below the lower threshold of food, more food 

needs to be accumulated – hence it reduces its tf and increases 

the tr. 

3. Similarly, if the amount of food at DA exceeds the upper 

threshold of food, it does not need to do further foraging as 

there is already enough food present in the DA. Rather the 

agent should carry out other tasks. Hence it increases the tf and 

reduces the tbc and tr. 

4. When a brood carer goes to the DA of the nest to pick up a 

piece of food in order to feed a hungry brood member, it finds 

the food by walking randomly inside the DA. It also keeps 

track of how long it is searching for food inside the dump area. 

If the searching time exceeds some critical allowed time (50 

time steps), it reduces its tf and increases tbc since there is not 

just enough food in the DA. 

5. If a forager is searching for a food item for a long time and 

is unsuccessful, it assumes that there is not enough food in the 

environment. Hence it reduces the tr and increases its tf. 

6. Both foragers and brood carers keep timing records of how 

long they have rested for inside the chamber. If the resting 

time exceeds some allowed time (50 time steps), they increase 

their tr (for both foragers and brood carer) and reduce the tf (if 

it is a forager). 

7. If a forager is successful in bringing a food item back to the 

environment, it gets a positive reward and reduces its tf. 

At any time the thresholds are bounded between -5 and +5. If 

the threshold exceeds + 5, that threshold is set to the maximum 

possible value for the threshold (+5). Similarly if the threshold 

value is below -5, it is set to the lowest possible value of the 

threshold which is -5. 

   For explicit communication, the only changes that have been 

made are the addition of four more behavioral rules (Rules 8 – 

11) to the dynamic agents (i.e. the foragers and brood carers). 

8. If an agent perceives shouting chemical, it not only reduces 

its own tbc, but also participates in the direct transmission of 

the message (for a brief period; 80 simulation time steps), 

“urgent brood caring needed” (Ubc), to other foragers and 

brood carers lying within twice its body size. 

9. When other agents receive the message Ubc, they also 

reduce their threshold for brood caring. However these agents 

refrain from further transmission of messages. 

10. Similarly, when an agent is in the dump area of the nest 

and perceives that the amount of food in the dump area is 

below some critical threshold (set to 5 throughout the 

experiment), it not only executes rule # 2 but also send a 

message Uf (urgent foraging needed) to other agents that lie 
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within 2 patches from the transmitting agent for a brief period 

(80 simulation time steps). 

11. When other agents receive the message Uf, they react by 

reducing their own threshold for foraging. However, they 

refrain themselves from further transmission of the Uf 

messages. 

IV.  EXPERIMENTS AND RESULTS 

   The model proposed and discussed above is simulated using 

Netlogo (a multi-agent programmable modeling environment) 

simulator.  Each simulation for a particular experiment is run 

for 5000 simulation time steps and is repeated 20 times. (5000 

simulation time step is sufficient for the average hunger level 

to converge; see figures 3 and 4). The average reading is then 

calculated from 20 trials.  

   Performance of the algorithms is measured by the average 

hunger level of the brood after the 5000th time step.  

bh

memberbrood

nth

HL

LHA


=

−...                                           (4) 

where thh is the threshold parameter of the hunger level and 
A.H.L. is the average hunger level of the brood. It needs to be 
noted here that since our objective is to regulate the hunger 
level of the brood, the lower the value for A.H.L. we obtain, the 
better is the performance of the strategy used. 

A.  Effect of Task Allocation Strategies on the performance 

of the colony 

   Communication is essential for effective task allocation but 
this does not necessarily mean that sophisticated 
communication would always yield better performance. Infact, 
Anderson and McShea [23] pointed out that as the ant colony 
size increases, they tend to use more and more sophisticated 
communication strategies which indicate that smaller colony 
size do not use very sophisticated technique. A possible 
hypothesis for this observation is that smaller colony does not 
have great colony demand and as a result they do not need 
sophisticated communication strategies. On the contrary, larger 
colony size would have more demand within the colony and 
consequently the ant colonies need to use much more 
sophisticated communication strategies to meet the demand.  

   In order to investigate if this really happens in the simulated 
ant colony, we ran each experiment 20 times for 5000 
simulation time steps. The mean reading for the average hunger 
level are shown in tables I and II.  

Table I: Average hunger level of brood when using indirect 
communication (S = Number of foragers + Number of brood carers 
and Nb = Number of brood members) 

S -> 20 30 40 50 60 

Nb = 5 2.25 1.54 1.08 1.02 1.16 

Nb = 15 3.34 2.11 1.82 1.51 1.08 

Nb = 25 3.75 3.10 2.49 1.68 1.50 

 

Table II: Average hunger level of brood when using explicit 
communication (S = Number of foragers + Number of brood carers 
and Nb = Number of brood members) 

S -> 20 30 40 50 60 

Nb = 5 1.88 1.14 1.03 1.05 1.08 

Nb = 15 2.65 1.59 1.23 1.17 0.99 

Nb = 25 3.48 2.49 1.98 1.66 1.24 

 

Table III: List of Parameters 

Parameter Meaning Value(s) used 

Nb Number of brood 

Members 

5, 15, 25  

S Number of mobile 

agents (i.e. number of 

foragers [Nf] + number 

of brood carers [Nbc]) 

20 – 100 

r = Rf-bc Initial ratio of foragers 

to brood carers. This 

can be used to 

determine the number 

of foragers and brood 

carers as follows: 

 SRN bcff = −  

fbc NSN −=  

0.2, 0.5, 0.9 

Epheromones Evaporation rate of 

Pheromones 

5% 

 

Dpheromones Diffusion rate of 

Pheromones 

60% 

Adaptation-rate The rate at which the 

thresholds are adapted 

0.09 

Shouting-radius The number of patches 

the brood member can 

shout when it gets 

hungry 

7 

Esc Evaporation rate of 

shouting chemical 

50% 

Ufood Upper threshold of 

food  

40 

Lfood Lower threshold of 

food 

5 

max-separate-

turn 

The maximum angle 

an agent can turn when 

avoiding another agent 

1.250 

Efood Energy provided by the 

food which causes the 

hunger level of the 

brood member fed to 

decrease  

100 

Thh Threshold parameter of 

the hunger level 

500 
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Figures 2 – 4 show how the performance (i.e. average hunger 

level at the 5000th simulation time step) vary with swarm size 

and the brood size for both indirect and explicit 

communication. 

 

 

Fig. 2.  Average hunger level when brood size = 5 and swarm size 20 – 100  

 
 

Fig.3. Average hunger level when brood size = 15 and swarm size 20 – 100  

 

  
 

Fig.4. Average hunger level when brood size = 25 and swarm size 20 – 100  

 

   Figures 2–4 show that the increasing the swarm size (number 

of dynamic agents) decreases the A.H.L. and that the A.H.L. is 

almost always lower for explicit communication than indirect 

communication. So, apparently it seems that explicit 

communication almost always work better than indirect 

communication. But the graphs also indicate for some swarm 

size, the difference in the average hunger levels for indirect and 

explicit communication is very narrow. To test if explicit 

communication strategy always yields significantly better 

performance than indirect communication, statistical 

significance tests needed to be carried out. Series of Mann-

Whitney tests with ( = 0.05, level of significance) were 

carried out to investigate if explicit communication strategy 

always yields statistically significant result from that of the 

corresponding indirect communication strategy. The result is 

displayed in Table IV. 

Table IV: Results Obtained 

S 20 30 40 50 60 

Nb = 5 √     

Nb = 15 √ √ √ √  

Nb = 25 √ √ √   

where  represents those cases in which the performance of 

the explicit and indirect communication do not vary 

significantly and √ represents those cases in which the 

performance of the two communication strategies vary 

significantly. The statistical tests indicate that explicit 

communication does not always yield significantly better 

result than that of indirect communication. Rather when the 

demand of the colony is considerably great (i.e. when brood 

size is large and there are not sufficient foragers and brood 

carers to meet the demand), employment of explicit 

communication improves the performance of the colony. This 

is in line with what is observed in real ant colonies. 

V.   CONCLUSION 

  This paper looks at the effects of using explicit and indirect 

communication strategies in a simulated colony of ants, and at 

the circumstances explicit communication strategy outperforms 

the other. Ants are popularly known to use indirect 

communication to signal other nest mates. However, in many 

situations, ants have been found to use explicit local 

communication with nest mates. Entomologists have 

established that in more complex situations, ants tend to use 

more sophisticated communication mechanisms. The simulated 

colony presented in this paper shows similar result as that of 

the real ant colonies. Explicit communication tends to improve 

the performance of the colony when the colonies are more 

stressed (e.g. when there are large brood size creating a lot of 

demand or when there are less number of dynamic agents 

present to meet the demand). In less stress situations, indirect 

communication strategy tends to perform as good as explicit 

communication strategy. For future work, we are making a 

formal guideline of the design issues regarding selection of 

appropriate task allocation strategies in different circumstances. 
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